Measure Functions for Frames
نویسندگان
چکیده
This paper addresses the natural question: “How should frames be compared?” We answer this question by quantifying the overcompleteness of all frames with the same index set. We introduce the concept of a frame measure function: a function which maps each frame to a continuous function. The comparison of these functions induces an equivalence and partial order that allows for a meaningful comparison of frames indexed by the same set. We define the ultrafilter measure function, an explicit frame measure function that we show is contained both algebraically and topologically inside all frame measure functions. We explore additional properties of frame measure functions, showing that they are additive on a large class of supersets– those that come from so called non-expansive frames. We apply our results to the Gabor setting, computing the frame measure function of Gabor frames and establishing a new result about supersets of Gabor frames.
منابع مشابه
The function ring functors of pointfree topology revisited
This paper establishes two new connections between the familiar function ring functor ${mathfrak R}$ on the category ${bf CRFrm}$ of completely regular frames and the category {bf CR}${mathbf sigma}${bf Frm} of completely regular $sigma$-frames as well as their counterparts for the analogous functor ${mathfrak Z}$ on the category {bf ODFrm} of 0-dimensional frames, given by the integer-valued f...
متن کاملContinuous $k$-Fusion Frames in Hilbert Spaces
The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames which is important for frame applications, have been specified completely for the c...
متن کاملCountable composition closedness and integer-valued continuous functions in pointfree topology
For any archimedean$f$-ring $A$ with unit in whichbreak$awedge (1-a)leq 0$ for all $ain A$, the following are shown to be equivalent: 1. $A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all integer-valued continuous functions on some frame $L$. 2. $A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$ of all integer-valued continuous functions, in the usual se...
متن کاملFrames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کامل